国产精品久久国产精品99_精品人妻AV无码一区二区三区_夜夜高潮夜夜爽夜夜爱爱一区_AV天堂午夜精品一区

信息中心
Information Centre
公司新聞     技術分享     往期新聞     活動分享    
FMI在基于模型系統工程中的應用
發布時間: 2020.05.15  點擊:5933 次
引言
傳統(tong)(tong)(tong)系(xi)統(tong)(tong)(tong)工程過(guo)程中,各專業學科(ke)獨立利用不同(tong)粒度模型和(he)仿真工具對(dui)(dui)系(xi)統(tong)(tong)(tong)總體設計(ji)方(fang)案進(jin)行(xing)驗(yan)(yan)證。但是對(dui)(dui)系(xi)統(tong)(tong)(tong)工程整體而言,對(dui)(dui)系(xi)統(tong)(tong)(tong)運行(xing)邏輯、狀態的(de)描(miao)述(shu)(shu)主要采(cai)用文本描(miao)述(shu)(shu)方(fang)式(shi),無法(fa)早期(qi)對(dui)(dui)系(xi)統(tong)(tong)(tong)整體方(fang)案進(jin)行(xing)驗(yan)(yan)證。系(xi)統(tong)(tong)(tong)整體驗(yan)(yan)證主要依(yi)賴系(xi)統(tong)(tong)(tong)集成驗(yan)(yan)證階段的(de)半實(shi)物/實(shi)物驗(yan)(yan)證,驗(yan)(yan)證迭代(dai)周(zhou)期(qi)長。采(cai)用MBSE方(fang)式(shi),可以早期(qi)持續的(de)對(dui)(dui)需求和(he)設計(ji)進(jin)行(xing)驗(yan)(yan)證,早期(qi)發現需求的(de)缺失/不一致以及設計(ji)的(de)缺陷。通過(guo)對(dui)(dui)系(xi)統(tong)(tong)(tong)架(jia)構(gou)方(fang)案的(de)設計(ji)、權(quan)衡分析與驗(yan)(yan)證,得到最優系(xi)統(tong)(tong)(tong)架(jia)構(gou)方(fang)案,交付軟硬件進(jin)行(xing)開發。

通(tong)過(guo)SysML語言(yan)中需求、行(xing)(xing)為、結(jie)構、參(can)數(shu)等4類(lei)模(mo)(mo)(mo)型(xing)(xing)之間元(yuan)素的(de)關(guan)聯,構建起動態可執行(xing)(xing)的(de)任務(wu)場景(jing)模(mo)(mo)(mo)型(xing)(xing)。對系統在具(ju)體(ti)任務(wu)中的(de)運(yun)行(xing)(xing)情況進行(xing)(xing)驗(yan)證(zheng)(zheng),通(tong)過(guo)集成(cheng)(cheng)系統模(mo)(mo)(mo)型(xing)(xing)與(yu)(yu)(yu)專(zhuan)業模(mo)(mo)(mo)型(xing)(xing)以(yi)增強模(mo)(mo)(mo)型(xing)(xing)運(yun)算能力。國際(ji)系統工程學(xue)(xue)會與(yu)(yu)(yu)美國國家科(ke)學(xue)(xue)基金會合作開展“曙光探測者(zhe)號”立(li)方(fang)體(ti)衛(wei)星的(de)論證(zheng)(zheng)、設(she)計(ji)(ji)與(yu)(yu)(yu)研制,集成(cheng)(cheng)了部分軌道設(she)計(ji)(ji)模(mo)(mo)(mo)型(xing)(xing)(STK)以(yi)及專(zhuan)業計(ji)(ji)算模(mo)(mo)(mo)型(xing)(xing)(Simulink),通(tong)過(guo)調整系統設(she)計(ji)(ji)參(can)數(shu)與(yu)(yu)(yu)任務(wu)參(can)數(shu)直接觀察系統整體(ti)運(yun)行(xing)(xing)情況,極大提高了系統先期驗(yan)證(zheng)(zheng)能力。


▲ 圖 1. CubeSat Mission Simulation

在缺乏系統模型的情況下,機電熱液控等學科采用不同仿真工具和數據模型,各學科之間的集成和耦合非常有限,多學科協同設計難以開展。使用SysML創建的系統模型能夠描述系統頂層整體的結構、行為、需求和約束信息,并且從技術角度以數據交互、模型轉換與封裝手段集成多學科的專業模型,從而能夠充當系統工程過程中多學科設計的集線器,通過系統模型實現多學科協同優化設計。本文結合DS的Cameo Systems Modeler?介紹FMI(Functional Mock-up Interface)在基于模型系統工程的多學科集成仿真驗證中的應用。


▲ 圖 2. 系統模型集成

案例分享
案(an)(an)例從挖(wa)掘機的(de)(de)(de)用(yong)戶需(xu)求出(chu)發(fa),設(she)(she)計整(zheng)體(ti)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)架(jia)構,根據該(gai)架(jia)構的(de)(de)(de)定義(yi),在(zai)設(she)(she)計的(de)(de)(de)早期把物(wu)理(li)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)模型(xing)(xing)(xing)(xing)(xing)和控制系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)模型(xing)(xing)(xing)(xing)(xing)耦合起來建立機電一(yi)(yi)體(ti)化(hua)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)模型(xing)(xing)(xing)(xing)(xing),在(zai)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)模型(xing)(xing)(xing)(xing)(xing)的(de)(de)(de)基礎上(shang)對(dui)整(zheng)體(ti)方(fang)案(an)(an)進(jin)(jin)行分(fen)析(xi)和優化(hua),完成各個子(zi)(zi)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)性(xing)能(neng)指標設(she)(she)定。隨后在(zai)子(zi)(zi)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)開發(fa)階段中,通(tong)過(guo)建立子(zi)(zi)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)進(jin)(jin)一(yi)(yi)步細化(hua)的(de)(de)(de)模型(xing)(xing)(xing)(xing)(xing),一(yi)(yi)方(fang)面(mian)審核(he)子(zi)(zi)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)的(de)(de)(de)性(xing)能(neng)是否滿足系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)設(she)(she)計階段定義(yi)的(de)(de)(de)性(xing)能(neng)指標;另(ling)一(yi)(yi)方(fang)面(mian)該(gai)子(zi)(zi)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)模型(xing)(xing)(xing)(xing)(xing)可(ke)(ke)以替(ti)代(dai)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)模型(xing)(xing)(xing)(xing)(xing)中的(de)(de)(de)功(gong)能(neng)模型(xing)(xing)(xing)(xing)(xing),從而可(ke)(ke)以在(zai)整(zheng)個系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)環境中對(dui)子(zi)(zi)系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)進(jin)(jin)行優化(hua)。根據系(xi)(xi)(xi)統(tong)(tong)(tong)(tong)(tong)定義(yi)的(de)(de)(de)物(wu)理(li)架(jia)構和需(xu)求,進(jin)(jin)行物(wu)理(li)部件的(de)(de)(de)3D幾何設(she)(she)計,在(zai)設(she)(she)計的(de)(de)(de)早期對(dui)物(wu)理(li)部件的(de)(de)(de)性(xing)能(neng)進(jin)(jin)行仿真驗證(zheng)。本文僅(jin)關注FMI在(zai)多學科聯(lian)合仿真中的(de)(de)(de)應用(yong)場(chang)景,見下圖。


▲ 圖 3. 多學科聯合仿真

在Cameo Systems Modeler?中創建了(le)挖掘(jue)機(ji)的(de)整(zheng)體模(mo)(mo)型(xing),從需求、結構(gou)、行(xing)為、和(he)(he)參(can)數等方(fang)(fang)面圖形(xing)化描(miao)述了(le)挖掘(jue)機(ji)系(xi)(xi)(xi)統(tong)。在Matlab Simulink中創建了(le)ECU模(mo)(mo)型(xing)用(yong)(yong)于模(mo)(mo)擬仿(fang)真(zhen)ECU控制(zhi)模(mo)(mo)型(xing)的(de)特(te)性(xing),同時(shi)在AMESIM中創建液壓子系(xi)(xi)(xi)統(tong)1物(wu)(wu)理(li)模(mo)(mo)型(xing)用(yong)(yong)于模(mo)(mo)擬仿(fang)真(zhen)液壓子系(xi)(xi)(xi)統(tong)的(de)物(wu)(wu)理(li)行(xing)為特(te)性(xing)。通過(guo)FMI的(de)Co-Simulation方(fang)(fang)法連接挖掘(jue)機(ji)系(xi)(xi)(xi)統(tong)模(mo)(mo)型(xing)、ECU模(mo)(mo)型(xing)和(he)(he)液壓系(xi)(xi)(xi)統(tong)模(mo)(mo)型(xing),利用(yong)(yong)CSM自(zi)帶的(de)Cameo Simulation Toolkit,對系(xi)(xi)(xi)統(tong)的(de)功能(neng)架構(gou)和(he)(he)性(xing)能(neng)指標進行(xing)聯合仿(fang)真(zhen)驗證。

通(tong)過對挖掘(jue)(jue)機工況(kuang)的(de)(de)(de)分析,仿真驗證ECU和液(ye)(ye)壓(ya)(ya)子(zi)系(xi)統(tong)設計方案是否滿足所有工況(kuang)下對系(xi)統(tong)的(de)(de)(de)功能(neng)和性(xing)能(neng)指(zhi)標要(yao)求。圖(tu)4是挖掘(jue)(jue)作業下的(de)(de)(de)ECU的(de)(de)(de)控(kong)制(zhi)輸(shu)出,通(tong)過對HMI的(de)(de)(de)人工控(kong)制(zhi)輸(shu)入信號的(de)(de)(de)處(chu)理轉換,傳輸(shu)給(gei)液(ye)(ye)壓(ya)(ya)系(xi)統(tong),作為液(ye)(ye)壓(ya)(ya)系(xi)統(tong)的(de)(de)(de)控(kong)制(zhi)輸(shu)入。圖(tu)5是挖掘(jue)(jue)作業下,液(ye)(ye)壓(ya)(ya)系(xi)統(tong)中(zhong)Boom、Dipper、Bucket液(ye)(ye)壓(ya)(ya)缸(gang)的(de)(de)(de)壓(ya)(ya)力變化。


▲ 圖 4. ECU的控制輸出


▲  圖 5. 液壓缸壓力

通(tong)過(guo)比對最(zui)大(da)工作(zuo)壓(ya)力同系(xi)(xi)(xi)統(tong)(tong)(tong)工作(zuo)下液(ye)(ye)(ye)壓(ya)缸壓(ya)力,早期(qi)仿真驗證液(ye)(ye)(ye)壓(ya)系(xi)(xi)(xi)統(tong)(tong)(tong)設(she)計(ji)方案(an)是否滿(man)足(zu)液(ye)(ye)(ye)壓(ya)系(xi)(xi)(xi)統(tong)(tong)(tong)最(zui)大(da)壓(ya)力需(xu)求。通(tong)過(guo)FMI方法連接(jie)挖掘機系(xi)(xi)(xi)統(tong)(tong)(tong)模(mo)型(xing)、ECU模(mo)型(xing)和(he)(he)液(ye)(ye)(ye)壓(ya)系(xi)(xi)(xi)統(tong)(tong)(tong)模(mo)型(xing)進行(xing)(xing)液(ye)(ye)(ye)壓(ya)系(xi)(xi)(xi)統(tong)(tong)(tong)壓(ya)力、流量和(he)(he)能(neng)耗等系(xi)(xi)(xi)統(tong)(tong)(tong)需(xu)求的(de)(de)仿真驗證,早期(qi)對液(ye)(ye)(ye)壓(ya)系(xi)(xi)(xi)統(tong)(tong)(tong)設(she)計(ji)方案(an)進行(xing)(xing)驗證(選(xuan)取(qu)的(de)(de)液(ye)(ye)(ye)壓(ya)缸,液(ye)(ye)(ye)壓(ya)馬達等系(xi)(xi)(xi)統(tong)(tong)(tong)元件(jian)規(gui)格(ge)是否能(neng)夠滿(man)足(zu)液(ye)(ye)(ye)壓(ya)系(xi)(xi)(xi)統(tong)(tong)(tong)要求)。
圖 6. 液壓系統工作壓力驗證

展望
本文重點關注案例中通過FMI Co-Simulation方法連接挖掘機系統模型、ECU模型和液壓系統模型,聯合仿真驗證子系統的功能架構和性能指標。FMI是應對工具碎片化、模型重用和知識產權保護問題的一種好的解決方案。但是FMI有它的局限性,FMI側重于電子、機械和軟件模型之間的高效協同仿真接口,主要目標是模擬和分析模型,無法用于集成需求和3D幾何(CAD)模型數據。基于3DE平臺的MBSE解決方案,在一個開放和協作的業務平臺上,統一數據源,實現需求管理、需求分析、架構設計、物理設計、仿真驗證和全生命周期的需求追溯,實現需求驅動的產品開發,使企業可以從整體上把握價值鏈的上下游系統,幫助避免因需求與物理實現不符所導致的成本昂貴的后期系統集成問題。

關于上海江達
上海江達是達索系統全球知名的合作伙伴,專注于PLM領域的信息化咨詢和實施服務,具有百余人的專家顧問實施團隊和二十余年的項目經驗。具備汽車與軌道交通、建筑與能源(BIM)、工業裝備、航空航天、船舶、高科技電子等多個行業的應用案例和最佳實踐。

供稿來源:技術部

關鍵詞:基于模型系統工程、仿真驗(yan)證、達索(suo)系統
最新動態
掃一掃加顧問微信